Virtual conference Cancer Research & Nucleic Acids 2021 March 12, 2021

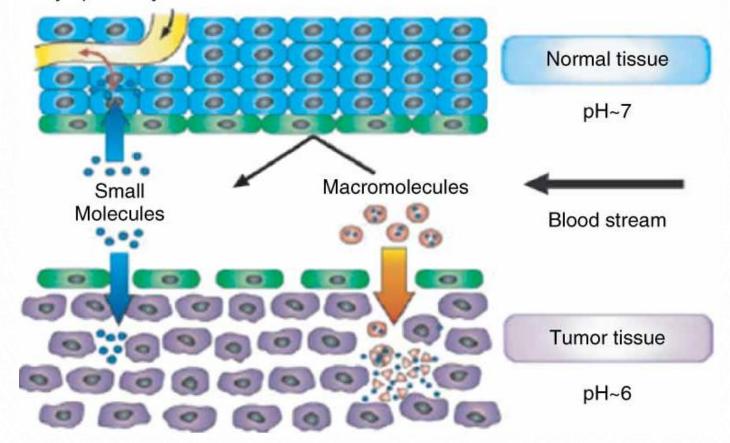
Mesenchymal stem cells engineered with TAT peptide functionalized nanoparticle Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting

Gopikrishna Moku

Assistant Professor Department of Physical Sciences Kakatiya Institute of Technology and Science Warangal, Telangana, India

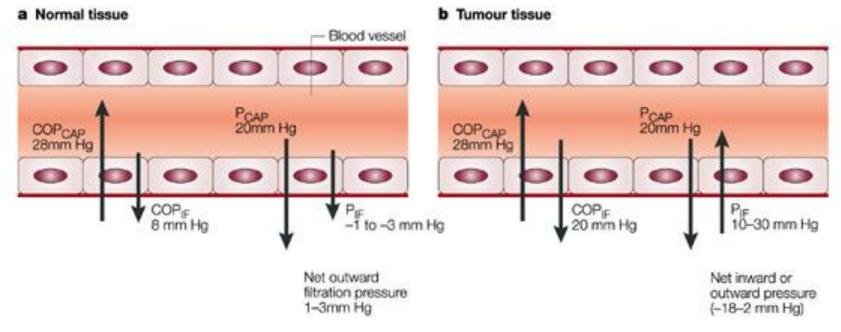
E-mail address: mgkr.pss@kitsw.ac.in

Lung Cancer: Statistics


- ① out of 4 cancer deaths is from lung cancer
- Lung cancer is the leading cancer killer in men & women in EVERY ETHNIC GROUP
- Worldwide lung cancer incidents are on track to increase by 38% to 2.89 million by 2030
- Lung cancer mortality is projected to reach 2.45 million worldwide by 2030, a 39% increase since 2018
- Average 5-year survival = 18%
- Require more effective treatment strategy

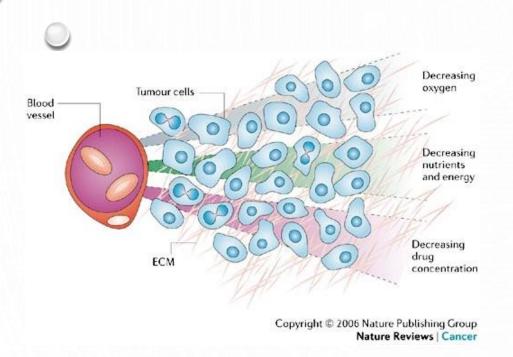
Cancer Therapy: Limitations...

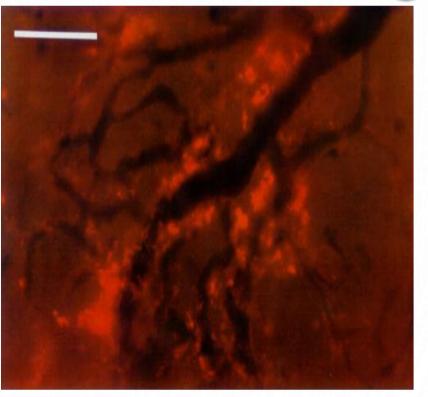
- Poor availability of chemotherapeutics in deepseated and metastatic cancers
- Development of drug resistance
- Dose-dependent cytotoxicity
- Need for targeted drug delivery to the tumor tissue
 - Improved therapeutic efficacy
 - Minimal toxic side effects


Enhanced Permeation and Retention Effect

Lymphatic system

Bisht and Maitra Nanomedicine and Nanobiotechnology 2009

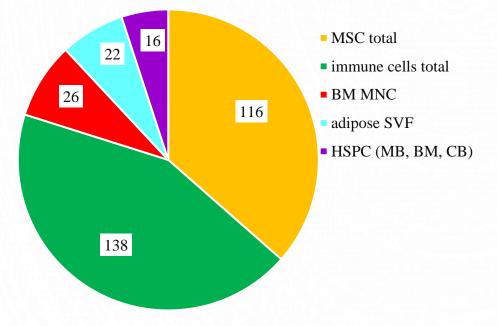

Elevated Interstitial Fluid Pressure Provides Resistance to Transport

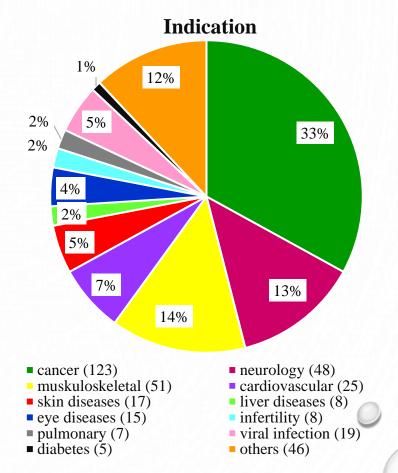


 P_{CAP} and COP_{CAP} : hydrostatic and colloid osmotic pressures in capillaries P_{IF} and COP_{IF} : hydrostatic and colloid osmotic pressures in surrounding inters

Heldin et. al. Nature Reviews Cancer 4, 806-813 (2004)

Spatial Heterogeneity in Permeability


Cancer Research 54 (1994): 3352-3356

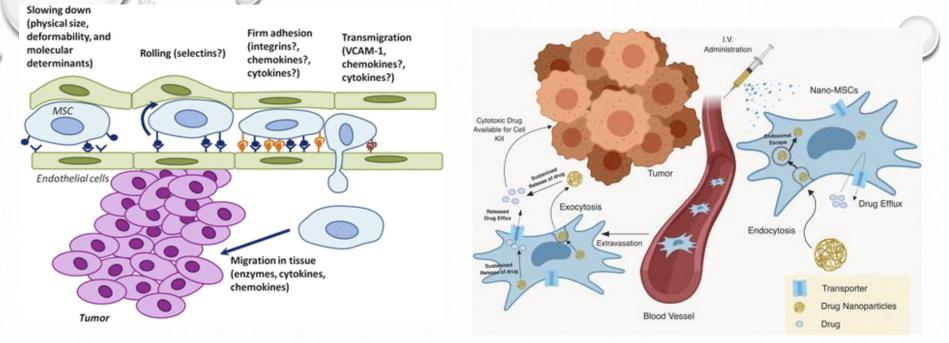

Minchinton et al. Nature Reviews Cancer 6, 583–592 (August 2006) | doi:10.1038/nrc1893

Cell Based Therapy

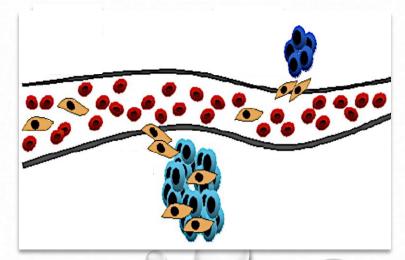
Total 372 clinical trials have been registered

Major cell types (85% of all trials)

Bersenev Alexey. Cell therapy clinical trials – 2014 report. CellTrials blog. January 22, 2015. Available: http://celltrials.info/2015/01/22/2014-report/

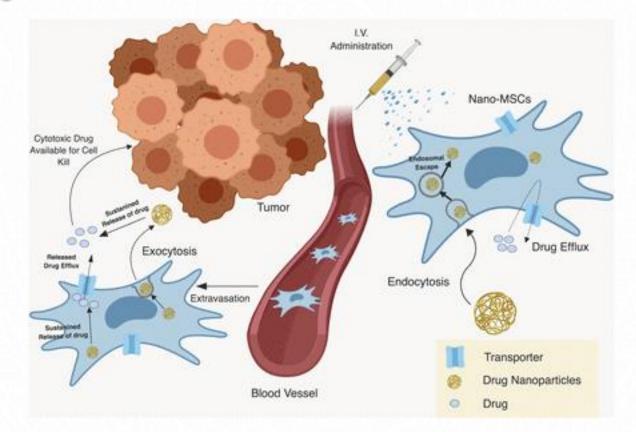

What Are Mesenchymal Stem Cells (MSCs) ?

- First isolated by Friedenstein in 1970s
- Fibroblast like cells spindle-shaped
- Adherent to tissue culture plastic
- High growth potential
- Surface markers: CD29, CD44, CD45, CD51, CD73 CD90/Thy-1, CD105, CD166, Integrin α1, PDGF, STRO-1, VCAM-1, IL-IR and absence of CD45, CD34, CD14, CD19, and HLA-DR.

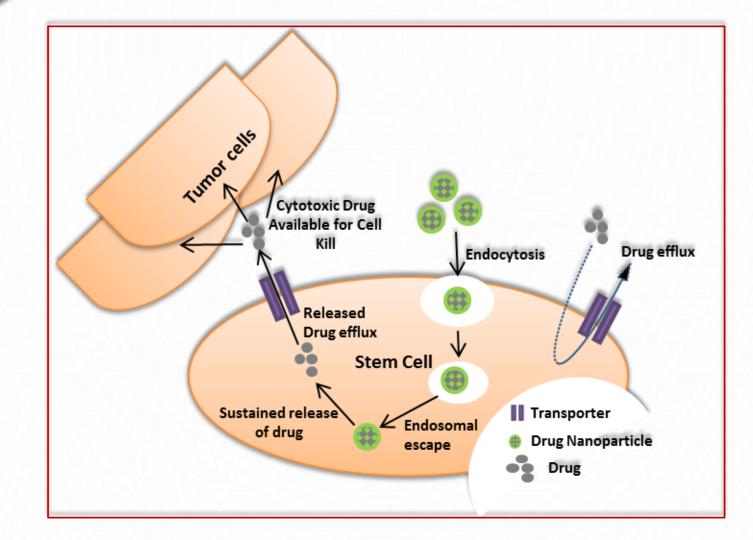

MSCs as Drug Delivery Vehicles: Supportive Feature

- Easy availability from adult bone marrow donors and other sources
- Low immunogenicity
- Selective homing to sites of inflammation and cancer
- Established biodistribution and toxicology profile
- Cryopreservation for long-term storage

Mechanisms of Tumor Migration

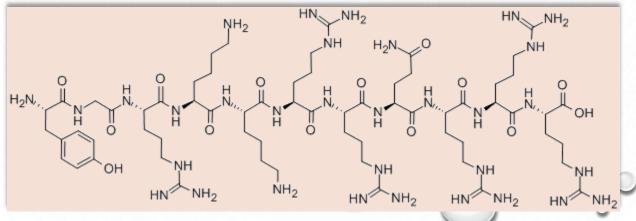


Droujinine et al. Oncotarget 4, 651-664 2013


B. Linju Yen and Men-Luh Yen, J. Cancer Mol. 4: 5-9, 2008

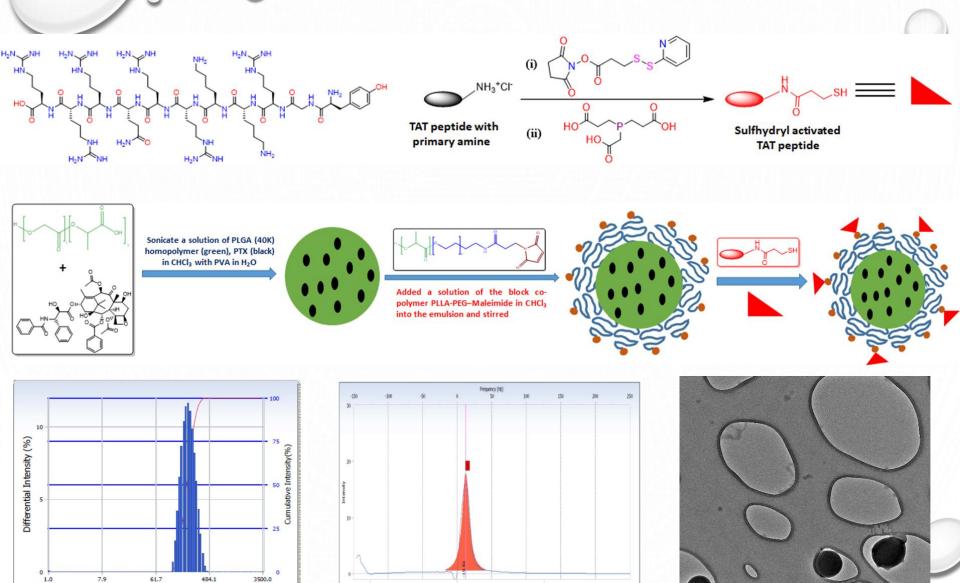
MSCs as Drug Delivery Vehicles: Limitation

- Drug resistant due to overexpression of efflux transporters
- Poor payload capacity


Nano-engineered MSCs as Drug Carrier: Hypothesis

Sadhukha et al., J. Control. Rel. 2014, 196, 243-251

Cell penetrating peptides

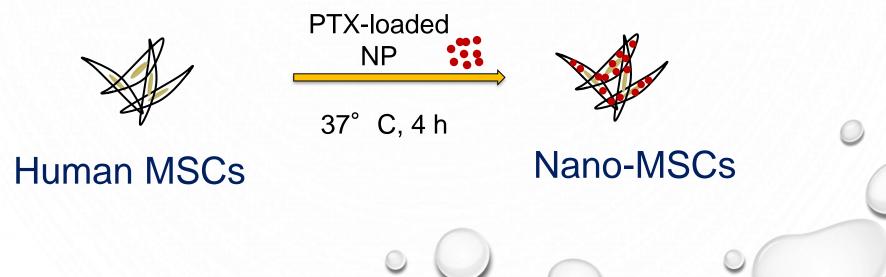

- Facilitate cellular intake and uptake of molecules
- CPPs are typically 5-30 amino acids long
- Transactivator of transcription (TAT) peptide has been widely investigated
- TAT-derived from the human immunodeficiency virus 1 protein containing 86–102 amino acid residues.
- TAT peptide (47 to 57 YGRKKRRQRRR) has been successfully used to deliver biologically active molecules.

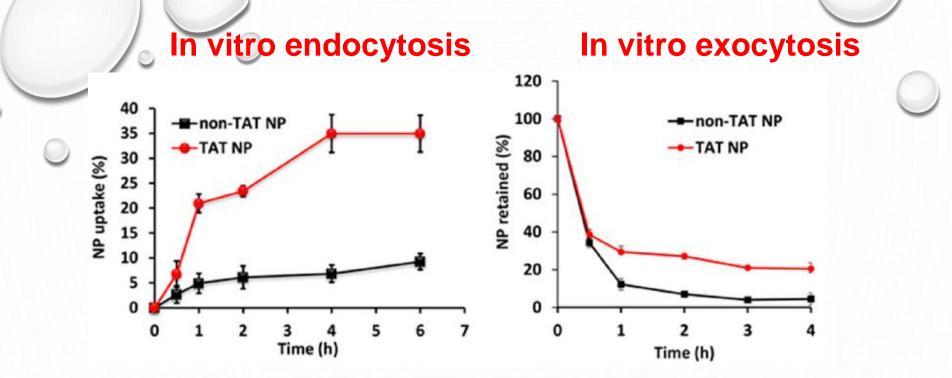
Hypothesis of the study

- Surface functionalization of polymeric nanoparticles with TAT peptide will enable
- their improved internalization into and retention by MSCs
- resulting in enhanced payload carrying capacity
- Covalently conjugated TAT peptide to the surface of nanoparticles encapsulating paclitaxel (PTX) and used these nanoparticles to incorporate paclitaxel (a potent anti-cancer agent) in MSCs.

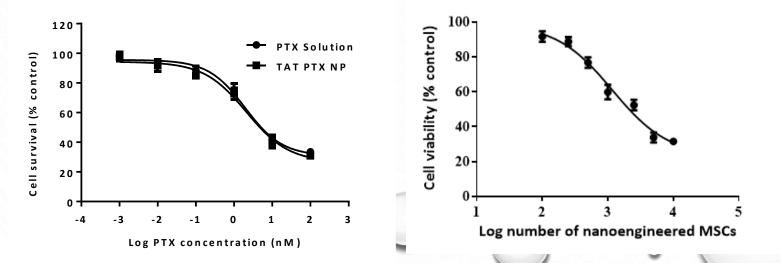
Preparation of TAT-PTX-NPs

0.0 -200.0 Zeta Potential (ml)

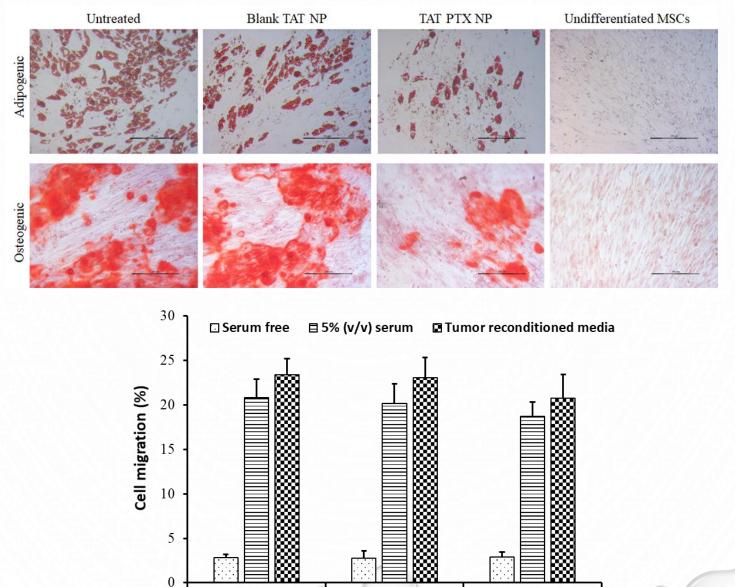

200.0


Diameter (nm)

Nano-engineering of MSCs


 PLGA nanoparticles prepared by emulsion-solvent evaporation technique

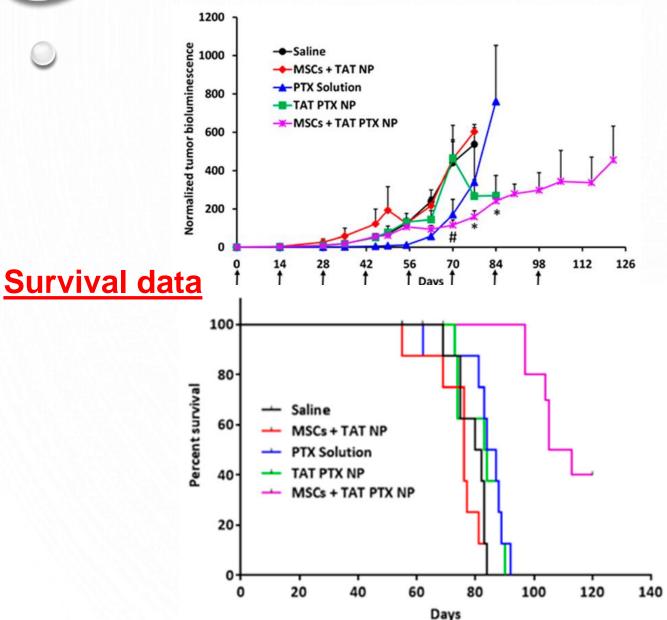
- Diameter: 225 ± 4 nm, Zeta potential: -15 ± 1.3 mV
- Paclitaxel (PTX) loading: 15-16 % (w/w)
- TAT peptide conjugation to NPs: 57 ± 4% (2.42 ± 0.14 µg/mg of NP).



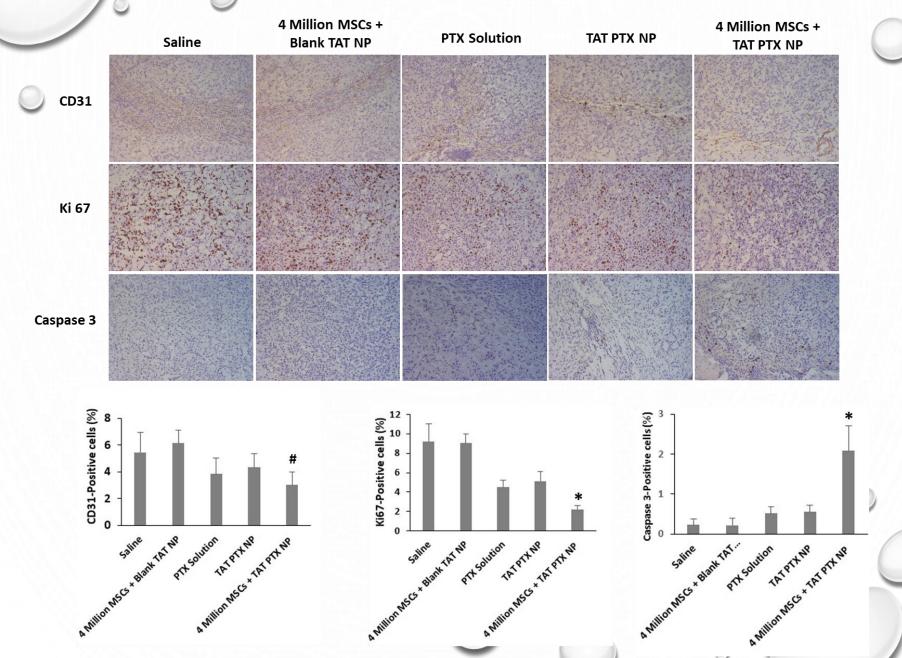
Cytotoxicity profiles of the nano-engineered MSCs, TAT PTX NP and PTX solution in A549 cells

Differentiation (adipogenic and osteogenic) and migration

potentials of nano-engineered MSCs


Blank TAT NP

TAT PTX NP


Untreated

Efficacy of nano-engineered MSCs in inhibiting orthotopic

tumor growth

Immunohistological analysis

Effect of different treatments on liver function test

Parameters	Saline		MSCs + TAT NP		TAT PTX NP		MSCs + TAT PTX NP	
	Day 7	Day 18	Day 7	Day 18	Day 7	Day 18	Day 7	Day 18
ALT (U/L)	33.0 ± 7.0	37.0 ± 5.3	33.5 ± 4.7	36.0 ± 5.4	32.5 ± 4.5	33.5 ± 5.5	35.8 ± 6.4	40.0 ± 4.4
AST (U/L)	80.7 ± 9.7	87.3 ± 13.1	85.8 ± 11.5	90.0 ± 10.8	85.7 ± 7.7	90.3 ± 10.0	84.8 ± 11.7	91.5 ± 5.8
GGT(U/L)	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
ALP (U/L)	94.3 ± 5.9	100.7 ± 7.1	90.3 ± 4.9	96.8 ± 11.0	95.5 ± 4.2	98.0 ± 16.5	95.0 ± 6.5	100.8 ± 10.3
TP (g/dL)	5.8 ± 0.2	5.4 ± 0.3	5.8 ± 0.3	5.9 ± 0.3	5.7 ± 0.2	5.5 ± 0.1	5.8 ± 0.2	5.3 ± 0.1
ALB(g/dL)	3.5 ± 0.1	3.2 ± 0.1	3.5 ± 0.2	3.4 ± 0.2	3.5 ± 0.1	3.4 ± 0.1	3.5 ± 0.1	3.4 ± 0.1
GLOB (g/dL)	2.3 ± 0.1	1.9 ± 0.1	2.3 ± 0.2	2.5 ± 0.2	2.1 ± 0.2	2.0 ± 0.1	2.3 ± 0.1	2.4 ± 0.0
A/G	1.5 ± 0.1	1.7 ± 0.1	1.6 ± 0.1	1.4 ± 0.1	1.7 ± 0.1	1.7 ± 0.1	1.5 ± 0.1	1.4 ± 0.0
TBIL (mg/dL)	0.3 ± 0.1	0.4 ± 0.1	0.3 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.3 ± 0.0	0.2 ± 0.0	0.3 ± 0.1

Abbreviations: ALT-alanine aminotransferase; AST-aspartate aminotransferase; GGT-gamma-glutamyl transferase; ALP-alkaline phosphatase; TP-total protein; ALB-albumin; GLOB-globulin; A/G-albumin/globulin ratio; TBIL-total bilirubin.

Effect of different treatments on complete blood count

	Saline		MSCs + TAT NP		TAT PTX NP		MSCs + TAT PTX NP	
Parameters	Day 7	Day 18	Day 7	Day 18	Day 7	Day 18	Day 7	Day 18
WBC (×10 ³ cells/ μ L)	5.0 ± 1.4	6.3 ± 0.5	4.9 ± 0.8	5.0 ± 0.6	5.3 ± 0.6	4.4 ± 0.2	5.6 ± 1.2	4.7 ± 0.7
RBC ($\times 10^6$ cells/ μ L)	9.8 ± 0.3	9.7 ± 0.3	9.8 ± 0.2	9.5 ± 0.3	9.8 ± 0.1	9.1 ± 0.3	9.7 ± 0.2	9.1 ± 0.1
HGB (g/dL)	15.4 ± 0.4	15.5 ± 0.6	15.3 ± 0.3	15.0 ± 0.5	15.6 ± 0.2	14.8 ± 0.3	15.1 ± 0.3	14.3 ± 0.3
HCT (%)	50.9 ± 1.1	49.2 ± 1.7	50.2 ± 1.0	46.5 ± 1.6	51.4 ± 0.7	46.1 ± 1.5	49.5 ± 0.9	45.6 ± 0.9
PLT (×10 ³ cells/ μ L)	840 ± 26	977 ± 50	1106 ± 224	1248 ± 131	914 ± 60	1060 ± 103	1349 ± 238	1234 ± 147

Abbreviations: WBC-white blood cell; RBC-red blood cell; HGB-hemoglobin concentration; HCT-hematocrit; PLT-platelets.

<u>Summary</u>

- We demonstrated significantly improved drug loading in MSCs by using TAT functionalized nanoparticles.
- These nano-engineered MSCs retained their osteogenic and adipogenic differentiation properties and tumor-tropism.
- Nano-engineered MSCs were effective in inhibiting tumor growth and increasing the overall survival in a mouse orthotopic lung tumor model.

Acknowledgements

Supervisors: Dr. Swayam Prabha Dr. Jayanth Panyam

Colleague Dr. Budhadev Layek

Thank you